DNS 原理入门

作者: 阮一峰

日期: 2016年6月16日

DNS 是互联网核心协议之一。不管是上网浏览,还是编程开发,都需要了解一点它的知识。

本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作。我的目标是,读完此文后,你就能完全理解DNS。

一、DNS 是什么?

DNS (Domain Name System 的缩写)的作用非常简单,就是根据域名查出IP地址。你可以把它想象成一本巨大的电话本。

举例来说,如果你要访问域名math.stackexchange.com,首先要通过DNS查出它的IP地址是151.101.129.69

如果你不清楚为什么一定要查出IP地址,才能进行网络通信,建议先阅读我写的《互联网协议入门》

二、查询过程

虽然只需要返回一个IP地址,但是DNS的查询过程非常复杂,分成多个步骤。

工具软件dig可以显示整个查询过程。


$ dig math.stackexchange.com

上面的命令会输出六段信息。

第一段是查询参数和统计。

第二段是查询内容。

上面结果表示,查询域名math.stackexchange.comA记录,A是address的缩写。

第三段是DNS服务器的答复。

上面结果显示,math.stackexchange.com有四个A记录,即四个IP地址。600是TTL值(Time to live 的缩写),表示缓存时间,即600秒之内不用重新查询。

第四段显示stackexchange.com的NS记录(Name Server的缩写),即哪些服务器负责管理stackexchange.com的DNS记录。

上面结果显示stackexchange.com共有四条NS记录,即四个域名服务器,向其中任一台查询就能知道math.stackexchange.com的IP地址是什么。

第五段是上面四个域名服务器的IP地址,这是随着前一段一起返回的。

第六段是DNS服务器的一些传输信息。

上面结果显示,本机的DNS服务器是192.168.1.253,查询端口是53(DNS服务器的默认端口),以及回应长度是305字节。

如果不想看到这么多内容,可以使用+short参数。


$ dig +short math.stackexchange.com

151.101.129.69
151.101.65.69
151.101.193.69
151.101.1.69

上面命令只返回math.stackexchange.com对应的4个IP地址(即A记录)。

三、DNS服务器

下面我们根据前面这个例子,一步步还原,本机到底怎么得到域名math.stackexchange.com的IP地址。

首先,本机一定要知道DNS服务器的IP地址,否则上不了网。通过DNS服务器,才能知道某个域名的IP地址到底是什么。

DNS服务器的IP地址,有可能是动态的,每次上网时由网关分配,这叫做DHCP机制;也有可能是事先指定的固定地址。Linux系统里面,DNS服务器的IP地址保存在/etc/resolv.conf文件。

上例的DNS服务器是192.168.1.253,这是一个内网地址。有一些公网的DNS服务器,也可以使用,其中最有名的就是Google的8.8.8.8和Level 3的4.2.2.2

本机只向自己的DNS服务器查询,dig命令有一个@参数,显示向其他DNS服务器查询的结果。


$ dig @4.2.2.2 math.stackexchange.com

上面命令指定向DNS服务器4.2.2.2查询。

四、域名的层级

DNS服务器怎么会知道每个域名的IP地址呢?答案是分级查询。

请仔细看前面的例子,每个域名的尾部都多了一个点。

比如,域名math.stackexchange.com显示为math.stackexchange.com.。这不是疏忽,而是所有域名的尾部,实际上都有一个根域名。

举例来说,www.example.com真正的域名是www.example.com.root,简写为www.example.com.。因为,根域名.root对于所有域名都是一样的,所以平时是省略的。

根域名的下一级,叫做"顶级域名"(top-level domain,缩写为TLD),比如.com.net;再下一级叫做"次级域名"(second-level domain,缩写为SLD),比如www.example.com里面的.example,这一级域名是用户可以注册的;再下一级是主机名(host),比如www.example.com里面的www,又称为"三级域名",这是用户在自己的域里面为服务器分配的名称,是用户可以任意分配的。

总结一下,域名的层级结构如下。


主机名.次级域名.顶级域名.根域名

# 即

host.sld.tld.root

五、根域名服务器

DNS服务器根据域名的层级,进行分级查询。

需要明确的是,每一级域名都有自己的NS记录,NS记录指向该级域名的域名服务器。这些服务器知道下一级域名的各种记录。

所谓"分级查询",就是从根域名开始,依次查询每一级域名的NS记录,直到查到最终的IP地址,过程大致如下。

  1. 从"根域名服务器"查到"顶级域名服务器"的NS记录和A记录(IP地址)
  2. 从"顶级域名服务器"查到"次级域名服务器"的NS记录和A记录(IP地址)
  3. 从"次级域名服务器"查出"主机名"的IP地址

仔细看上面的过程,你可能发现了,没有提到DNS服务器怎么知道"根域名服务器"的IP地址。回答是"根域名服务器"的NS记录和IP地址一般是不会变化的,所以内置在DNS服务器里面。

下面是内置的根域名服务器IP地址的一个例子

上面列表中,列出了根域名(.root)的三条NS记录A.ROOT-SERVERS.NETB.ROOT-SERVERS.NETC.ROOT-SERVERS.NET,以及它们的IP地址(即A记录)198.41.0.4192.228.79.201192.33.4.12

另外,可以看到所有记录的TTL值是3600000秒,相当于1000小时。也就是说,每1000小时才查询一次根域名服务器的列表。

目前,世界上一共有十三组根域名服务器,从A.ROOT-SERVERS.NET一直到M.ROOT-SERVERS.NET

六、分级查询的实例

dig命令的+trace参数可以显示DNS的整个分级查询过程。


$ dig +trace math.stackexchange.com

上面命令的第一段列出根域名.的所有NS记录,即所有根域名服务器。

根据内置的根域名服务器IP地址,DNS服务器向所有这些IP地址发出查询请求,询问math.stackexchange.com的顶级域名服务器com.的NS记录。最先回复的根域名服务器将被缓存,以后只向这台服务器发请求。

接着是第二段。

上面结果显示.com域名的13条NS记录,同时返回的还有每一条记录对应的IP地址。

然后,DNS服务器向这些顶级域名服务器发出查询请求,询问math.stackexchange.com的次级域名stackexchange.com的NS记录。

上面结果显示stackexchange.com有四条NS记录,同时返回的还有每一条NS记录对应的IP地址。

然后,DNS服务器向上面这四台NS服务器查询math.stackexchange.com的主机名。

上面结果显示,math.stackexchange.com有4条A记录,即这四个IP地址都可以访问到网站。并且还显示,最先返回结果的NS服务器是ns-463.awsdns-57.com,IP地址为205.251.193.207

七、NS 记录的查询

dig命令可以单独查看每一级域名的NS记录。


$ dig ns com
$ dig ns stackexchange.com

+short参数可以显示简化的结果。


$ dig +short ns com
$ dig +short ns stackexchange.com

八、DNS的记录类型

域名与IP之间的对应关系,称为"记录"(record)。根据使用场景,"记录"可以分成不同的类型(type),前面已经看到了有A记录和NS记录。

常见的DNS记录类型如下。

(1) A:地址记录(Address),返回域名指向的IP地址。

(2) NS:域名服务器记录(Name Server),返回保存下一级域名信息的服务器地址。该记录只能设置为域名,不能设置为IP地址。

(3)MX:邮件记录(Mail eXchange),返回接收电子邮件的服务器地址。

(4)CNAME:规范名称记录(Canonical Name),返回另一个域名,即当前查询的域名是另一个域名的跳转,详见下文。

(5)PTR:逆向查询记录(Pointer Record),只用于从IP地址查询域名,详见下文。

一般来说,为了服务的安全可靠,至少应该有两条NS记录,而A记录和MX记录也可以有多条,这样就提供了服务的冗余性,防止出现单点失败。

CNAME记录主要用于域名的内部跳转,为服务器配置提供灵活性,用户感知不到。举例来说,facebook.github.io这个域名就是一个CNAME记录。


$ dig facebook.github.io

...

;; ANSWER SECTION:
facebook.github.io. 3370    IN  CNAME   github.map.fastly.net.
github.map.fastly.net.  600 IN  A   103.245.222.133

上面结果显示,facebook.github.io的CNAME记录指向github.map.fastly.net。也就是说,用户查询facebook.github.io的时候,实际上返回的是github.map.fastly.net的IP地址。这样的好处是,变更服务器IP地址的时候,只要修改github.map.fastly.net这个域名就可以了,用户的facebook.github.io域名不用修改。

由于CNAME记录就是一个替换,所以域名一旦设置CNAME记录以后,就不能再设置其他记录了(比如A记录和MX记录),这是为了防止产生冲突。举例来说,foo.com指向bar.com,而两个域名各有自己的MX记录,如果两者不一致,就会产生问题。由于顶级域名通常要设置MX记录,所以一般不允许用户对顶级域名设置CNAME记录。

PTR记录用于从IP地址反查域名。dig命令的-x参数用于查询PTR记录。


$ dig -x 192.30.252.153

...

;; ANSWER SECTION:
153.252.30.192.in-addr.arpa. 3600 IN    PTR pages.github.com.

上面结果显示,192.30.252.153这台服务器的域名是pages.github.com

逆向查询的一个应用,是可以防止垃圾邮件,即验证发送邮件的IP地址,是否真的有它所声称的域名。

dig命令可以查看指定的记录类型。


$ dig a github.com
$ dig ns github.com
$ dig mx github.com

九、其他DNS工具

除了dig,还有一些其他小工具也可以使用。

(1)host 命令

host命令可以看作dig命令的简化版本,返回当前请求域名的各种记录。


$ host github.com

github.com has address 192.30.252.121
github.com mail is handled by 5 ALT2.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 10 ALT4.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 10 ALT3.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 5 ALT1.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 1 ASPMX.L.GOOGLE.COM.

$ host facebook.github.com

facebook.github.com is an alias for github.map.fastly.net.
github.map.fastly.net has address 103.245.222.133

host命令也可以用于逆向查询,即从IP地址查询域名,等同于dig -x <ip>


$ host 192.30.252.153

153.252.30.192.in-addr.arpa domain name pointer pages.github.com.

(2)nslookup 命令

nslookup命令用于互动式地查询域名记录。


$ nslookup

> facebook.github.io
Server:     192.168.1.253
Address:    192.168.1.253#53

Non-authoritative answer:
facebook.github.io  canonical name = github.map.fastly.net.
Name:   github.map.fastly.net
Address: 103.245.222.133

> 

(3)whois 命令

whois命令用来查看域名的注册情况。


$ whois github.com

十、参考链接

(完)

珠峰培训

简寻

留言(42条)

很棒!

查询方式有两种
递归和迭代

学习了,谢谢。

阮老师的博文真的都是精品

文章很棒,提下我的疑问:“683是TTL值(Time to live 的缩写),表示缓存时间”中的683没有在截图中找到,还有为什么会选择683当做缓存时间时间呢?

请问您现在从事的什么工作呢?

@gzq 谢谢指出,已经改过来了。

「683是TTL值(Time to live 的缩写)」
截图明明是600啊!

终于理解了

查询的时候没有办法查询出来某个域名下面所有A记录吧 --

请问.root一般会省略,因为所有域名的根域名都是.root。为什么在dig中不把点也省略了?纯好奇:)

学习了,博客写的浅显易懂

再加上递归查询就完美了,很棒!阮老师发博文有固定时间吗?

引用lot的发言:

「683是TTL值(Time to live 的缩写)」
截图明明是600啊!

写一篇博客可不是一口气写下来的,也不一定是一天之内写完的。

怒赞!

引用xiaoyong的发言:

请问您现在从事的什么工作呢?

在支付宝前端啊

阮兄,作为一名技术人,这篇文章我是会打赏的。

应该设置微信公告号了~~

引用肖恩的发言:

应该设置微信公告号了~~

微信公共账号文章内容发布就不能再修改了

写的不错,比我看的很多写dns的文章都要好

前一阵子准备自建dns来着,那叫一个头大啊,要是早点看到这篇文章就好了

非常清晰 ,最近也在研究DNS,自己用NodeJs 实现了一套

好东西 干货

写得真好,终于理解ns record和a record的区别了, cname也理解了。 分层查询也超棒!
谢谢!

支持阮老师

最近正好在研究一种利用DNS的数据传送方式,可以突破防火墙,大家可以聊聊
https://story.tonylee.name/2016/06/20/yong-dnsmasqshi-xian-data-retrive-over-dns/

请问阮老师,在查询"dig www.baidu.com"的时候既查到的是CNAME(www.a.shifen.com.)以及CNAME的IP地址(103.235.46.39),而不是直接的A记录IP地址,这个我能理解,可是为什么在“dig -x 103.235.46.39”的时候查到的不是“www.a.shifen.com”, 而是下面的一长串?

感谢解答!

steven@steven ~/Documents/ui-blog $ dig -x 103.235.46.39

; >> DiG 9.8.3-P1 >> -x 103.235.46.39
;; global options: +cmd
;; Got answer:
;; ->>HEADER ;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;39.46.235.103.in-addr.arpa. IN PTR

;; AUTHORITY SECTION:
103.in-addr.arpa. 330 IN SOA ns1.apnic.net. read-txt-record-of-zone-first-dns-admin.apnic.net. 22867 7200 1800 604800 172800

;; Query time: 15 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jun 24 08:14:53 2016
;; MSG SIZE rcvd: 133

介绍的很详尽的说。

十字好评

阮老师 文章转啦

我觉得还可以再讲讲authority, non-authority等

引用gzq的发言:

文章很棒,提下我的疑问:“683是TTL值(Time to live 的缩写),表示缓存时间”中的683没有在截图中找到,还有为什么会选择683当做缓存时间时间呢?

这个应该是还剩683秒,也就是说683秒后会刷新

非常棒,看完后我对DNS的理解大大增强~thanks

看了老师的几片文章,正好在整理网络相关的学习思路,非常感谢!

很不错的文章,感谢无私奉献

三级域名的说法不准确,域名树的层级最多可以有127层

学习了,真的是精品,看了一下你们网站是从04年就开始了,真是不容易呀。

第八部分的这句话:

由于顶级域名通常要设置MX记录,所以一般不允许用户对顶级域名设置CNAME记录。

这里的顶级域名应该是指次级域名吧,像.com,和.org这种顶级域名,一般普通用户无权操作的吧!

还有一个疑问:

为什么 NS 记录只能设置成域名?

例如`stackexchange.com`的NS记录为:

```
stackexchange.com. 172800 IN NS ns-463.awsdns-57.com.
stackexchange.com. 172800 IN NS ns-925.awsdns-51.net.
stackexchange.com. 172800 IN NS ns-1029.awsdns-00.org.
stackexchange.com. 172800 IN NS ns-1832.awsdns-37.co.uk.
```

这是不是意味着如果要获取stackexchange.com的域名服务器的IP地址,还要解析出`ns-463.awsdns-57.com.`等的地址。

感谢,这样理解印象还是比较深的

浅显易懂 很赞

涉猎广泛啊

浅显易懂,图文并茂,赞赞赞

我要发表看法

«-必填

«-必填,不公开

«-我信任你,不会填写广告链接