问一个基本的问题。
负数在计算机中如何表示?
举例来说,+8在计算机中表示为二进制的1000,那么-8怎么表示呢?
很容易想到,可以将一个二进制位(bit)专门规定为符号位,它等于0时就表示正数,等于1时就表示负数。比如,在8位机中,规定每个字节的最高位为符号位。那么,+8就是00001000,而-8则是10001000。
但是,随便找一本《计算机原理》,都会告诉你,实际上,计算机内部采用2的补码(Two's Complement)表示负数。
什么是2的补码?
它是一种数值的转换方法,要分二步完成:
第一步,每一个二进制位都取相反值,0变成1,1变成0。比如,00001000的相反值就是11110111。
第二步,将上一步得到的值加1。11110111就变成11111000。
所以,00001000的2的补码就是11111000。也就是说,-8在计算机(8位机)中就是用11111000表示。
不知道你怎么看,反正我觉得很奇怪,为什么要采用这么麻烦的方式表示负数,更直觉的方式难道不好吗?
昨天,我在一本书里又看到了这个问题,然后就花了一点时间到网上找资料,现在总算彻底搞明白了。
2的补码的好处
首先,要明确一点。计算机内部用什么方式表示负数,其实是无所谓的。只要能够保持一一对应的关系,就可以用任意方式表示负数。所以,既然可以任意选择,那么理应选择一种最方便的方式。
2的补码就是最方便的方式。它的便利体现在,所有的加法运算可以使用同一种电路完成。
还是以-8作为例子。
假定有两种表示方法。一种是直觉表示法,即10001000;另一种是2的补码表示法,即11111000。请问哪一种表示法在加法运算中更方便?
随便写一个计算式,16 + (-8) = ?
16的二进制表示是 00010000,所以用直觉表示法,加法就要写成:
00010000
+10001000
---------
10011000
可以看到,如果按照正常的加法规则,就会得到10011000的结果,转成十进制就是-24。显然,这是错误的答案。也就是说,在这种情况下,正常的加法规则不适用于正数与负数的加法,因此必须制定两套运算规则,一套用于正数加正数,还有一套用于正数加负数。从电路上说,就是必须为加法运算做两种电路。
现在,再来看2的补码表示法。
00010000
+11111000
---------
100001000
可以看到,按照正常的加法规则,得到的结果是100001000。注意,这是一个9位的二进制数。我们已经假定这是一台8位机,因此最高的第9位是一个溢出位,会被自动舍去。所以,结果就变成了00001000,转成十进制正好是8,也就是16 + (-8) 的正确答案。这说明了,2的补码表示法可以将加法运算规则,扩展到整个整数集,从而用一套电路就可以实现全部整数的加法。
2的补码的本质
在回答2的补码为什么能正确实现加法运算之前,我们先看看它的本质,也就是那两个步骤的转换方法是怎么来的。
要将正数转成对应的负数,其实只要用0减去这个数就可以了。比如,-8其实就是0-8。
已知8的二进制是00001000,-8就可以用下面的式子求出:
00000000
-00001000
---------
因为00000000(被减数)小于0000100(减数),所以不够减。请回忆一下小学算术,如果被减数的某一位小于减数,我们怎么办?很简单,问上一位借1就可以了。
所以,0000000也问上一位借了1,也就是说,被减数其实是100000000,算式也就改写成:
100000000
-00001000
---------
11111000
进一步观察,可以发现100000000 = 11111111 + 1,所以上面的式子可以拆成两个:
11111111
-00001000
---------
11110111
+00000001
---------
11111000
2的补码的两个转换步骤就是这么来的。
为什么正数加法适用于2的补码?
实际上,我们要证明的是,X-Y或X+(-Y)可以用X加上Y的2的补码完成。
Y的2的补码等于(11111111-Y)+1。所以,X加上Y的2的补码,就等于:
X + (11111111-Y) + 1
我们假定这个算式的结果等于Z,即 Z = X + (11111111-Y) + 1
接下来,分成两种情况讨论。
第一种情况,如果X小于Y,那么Z是一个负数。这时,我们就对Z采用2的补码的逆运算,求出它对应的正数绝对值,再在前面加上负号就行了。所以,
Z = -[11111111-(Z-1)] = -[11111111-(X + (11111111-Y) + 1-1)] = X - Y
第二种情况,如果X大于Y,这意味着Z肯定大于11111111,但是我们规定了这是8位机,最高的第9位是溢出位,必须被舍去,这相当于减去100000000。所以,
Z = Z - 100000000 = X + (11111111-Y) + 1 - 100000000 = X - Y
这就证明了,在正常的加法规则下,可以利用2的补码得到正数与负数相加的正确结果。换言之,计算机只要部署加法电路和补码电路,就可以完成所有整数的加法。
(完)
Harvey 说:
受教了,谢谢。
2009年8月 5日 17:49 | # | 引用
daryl 说:
Two's Complement 可不能翻译成“二进制补码”,而是“2的补码”。
同样还可以有其他的补码,比如UDP checksum用"1的补码”.
2009年8月 5日 18:38 | # | 引用
xifs 说:
呵呵..这个以前在数电中学过..基本上忘记了..
看到这个又回忆起来了..受教..
2009年8月 5日 19:40 | # | 引用
双木舟 说:
写得很不错,长进了:)
2009年8月 5日 19:47 | # | 引用
dylanklc 说:
记得数字电路有超前进位加法计算器的设计于实现……
当年实验室就数字电路还有点意思是凭着兴趣没日没夜的做实验……
现在都快忘光了。
2009年8月 5日 20:27 | # | 引用
Ruan YiFeng 说:
多谢指出。确实是你说的对,我没有仔细考虑译名,现在已经改过来了。
唉,像我这样的非专业人士与专业人士的差距就在这里,对一些基础概念和基础术语把握不好。
2009年8月 5日 20:37 | # | 引用
Hoyou 说:
谢谢,以前一直对为什么用补码很疑惑,现在明白了
2009年8月 5日 21:58 | # | 引用
11 说:
谢谢,现在明白了,以前看计算机原理的书一直没有弄懂这个是怎么回事。
2009年8月 5日 23:21 | # | 引用
issac 说:
乘法其实是加法, 除法其实是减法, 减法其实也是加法, 所以到最后,我们只需要设计加法的电路就够了
2009年8月 6日 01:03 | # | 引用
iceberg 说:
2的补码差强人意,二补数更准确(见维基百科)。不过补码专门用来指关于二的补数,所以直接说补码也可,2的补码显得不通。
2009年8月 6日 01:10 | # | 引用
sphinux 说:
感谢能有这样清楚明白的文章,比计算机专业解释的要好,因为简明扼要而又说清楚本质。问题是国内的教材里不会告诉你为什么,也没有兴趣去引导你发现为什么,总是先整一堆定义和定理,强行让人接受,再去应用到考试里,就这种态度和做法,首先就把很多潜在的兴趣和天份扼杀了
2009年8月 6日 01:28 | # | 引用
yxsongbo 说:
2009年8月 6日 12:57 | # | 引用
yxsongbo 说:
阮兄的专业是经济学,可是为什么会花那么多时间来研究计算机的基本常识呢?
2009年8月 6日 13:04 | # | 引用
FreeWater 说:
Z = X + (11111111-Y) + 1式子可以写为Z = X - Y +100000000,这在硬件上可以理解为两部分电路来实现,第一部分是前面的X - Y(这里姑且不管计算的结果是正还是负),第二部分是X - Y计算的结果再和100000000相加,最终得到计算的结果Z, 而在8位的计算机上100000000是不能出现的,其实这时100000000就相当于00000000(舍去了最高位),然后我们再看一些计算的过程:
Z = X + (11111111 - Y) + 1
= X - Y + 100000000
= X - Y + 00000000
= X - Y
证毕。
这样我们就证明了X-Y或X+(-Y)可以用X加上Y的2的补码完成,而不必分两种情况来证明。
2009年8月 6日 14:51 | # | 引用
Ruan YiFeng 说:
你的证明比我好,我想得太复杂了,没想到还有简单证法。
好像确实是“二补数”的译法比较好,但是还存在One's Complement、Nine's Complement等等术语,都这么翻译,也蛮奇怪的。不过,Two's Complement这个英文词本身就很费解。
2009年8月 6日 19:26 | # | 引用
半就业 说:
2009年8月 6日 23:12 | # | 引用
半就业 说:
原来没被误导只是说法不同,这里有个介绍:
http://www.zjidea.com/blog/article/electron/2009-05-24-1.htm
1的补码,2的补码这种说法真的不常见
2009年8月 6日 23:25 | # | 引用
无业 说:
没有错,但是也没有阻止你去弄明白
2009年8月 7日 18:11 | # | 引用
wanghsiaodong 说:
为什么会有补码?
在十进制中,如果最高位两位,那么(N - 25) 与 (N + 75)再去掉溢出位,结果是一样的。
在我们古老的哲学思想中,9为至,多过9就是溢则损,损多少呢,损了与75互补的一个数。所以如果N是26,就最多只能加73,加了74就没了,加75就变负的了。
补码的计算?
二进制:由于是二元的,求反加1就直接等于补码,不但步数是确定的,而且只要两步。
十进制:如果从1开始,那么到溢出就要加9,如果步长确定,步数就不确定,如果步数确定,步长就不确定。所以无法用统一的方式达成25到75的转换。
2009年8月 8日 23:02 | # | 引用
shark 说:
首先感谢阮大详细的说明,这东西我都已经忘记很久了……-_-|||
………………………………
有没有搞错,我只看过2本(随便挑了市面上最流行销量最好的的)C/C++语言教程,它们的第一章都会讲下数据的类型,基本内容什么的。
关于2的补码(哎呀不记得书里叫什么了)亦有很详细的解释,阮大讲到的内容其实都有写到,只是并非像阮大这样单独列出,而是在数据存储方式的负数存储里面提到。好像除了运算方便,还有一个避开长数据的单字节和双字节数据存储的冲突问题吧(实在记不清了)
sphinux同志,您看像我这样的只是为了考二级证才去学的人也记得有这么个东西,并且我觉得很简明扼要啊,本质也说得很清楚不会给我这个电白造成理解障碍…………我说您至于这么抵毁“国内的教材”嘛!!
2009年8月14日 21:26 | # | 引用
TOM 说:
感谢!
2009年8月22日 09:55 | # | 引用
Sean 说:
表示正负的和1参0加运算吗?结果的符号怎么判断
2009年9月 3日 13:13 | # | 引用
winxie 说:
感谢解惑,不过这个标题是否可以改改:关于2进制补码表示法
2009年10月 8日 11:00 | # | 引用
hshqcn 说:
《编码的奥秘》中的第13章有详细的解释。
2010年3月 2日 14:39 | # | 引用
bluebear720 说:
我的资料里有二元补码、一元补码这样的翻译!
2010年10月 4日 12:00 | # | 引用
纳米黑客 说:
补码还有个重要的用处就是避免0有两种表示方式吧- -
2011年8月10日 16:52 | # | 引用
meltedmetal 说:
“补码”的百度百科中,提到‘模’的概念,其中时钟的例子,有助于感性的理解。
2011年12月31日 11:55 | # | 引用
bzz 说:
00001000的2的补码就是11111000
-------------------------------
00001000的2的补码就是00001000
2012年6月16日 10:32 | # | 引用
vavio99 说:
"第一步,每一个二进制位都取相反值,0变成1,1变成0。比如,00001000的相反值就是11110111。"
这个也不对,符号位是不变的
比如"-8在计算机(8位机)中就是用11111000表示。" 是这么计算的
原码 10001000
反码 11110111
补码 11111000
这样计算才与引号的中的描述相一致;
2013年4月 1日 21:32 | # | 引用
淡淡的糊涂 说:
有一点不太明白,如你所说,-8在8位计算机中用11111000表示,但是在11111000也可以表示正数248,那么计算机碰见11111000时,到底如何解释它呢?是把它当作-8呢?还是248呢?
2013年5月21日 20:30 | # | 引用
淡淡的糊涂 说:
不好意思,是我没有仔细看你的文章,在你文章开头,已经介绍了符号位。所以11111000对8位计算机来说,不存在歧义,肯定是-8。
2013年5月21日 20:40 | # | 引用
bruce 说:
上学时一直没弄明白,现在终于明白了,谢谢大牛!
2013年7月 1日 17:15 | # | 引用
luobenxlnslb 说:
写错了!
00001000的2的补码怎么会是11111000呢?是正数,应该是它自己。
10001000的2的补码才是11111000呢!
2013年10月15日 23:40 | # | 引用
luobenxlnslb 说:
看了wiki上的one's complement和two's complement才真正理解了2的补码的意思,收回上一个错误的结论。确实,看英文的原版很重要,翻译过来怎么说都很绕口,很难用中文的思维来理解这个2的补码算什么意思。
2014年1月 2日 23:57 | # | 引用
luobenxlnslb 说:
之所以产生了上述的混乱是因为作者在“什么是2的补码?”这段的解释,并没有诠释为什么叫“2”的补码,因此就像我们在大学听老师解释补码时所说的,取反+1,现在回忆起来老师讲的是某个数的补码,比如-8的补码是多少,会产生如下的解释:
-8的源码是多少
符号位以外取反是多少
然后末尾+1
而这里作者所表达的其实是8的2的补码,也就是带着符号位取反+1,然后它的结果代表的是-8
所以两种表达,最后都是一个结果,但是一会儿前种说法,一会儿后种说法,本文夹杂了两种说法,并且说法的前提都没讲清楚,所以造成了我的混乱。
不知道第一次看这偏文章的人有没有这样的感觉,一会儿理解了,一会儿又混乱了,这是因为没有从根本上理解它。
不过作者的语言表达能力我觉得还是很强的,支持!
2014年1月 3日 00:09 | # | 引用
pythonwood 说:
和我的想法完全吻合,渣渣略同!
2014年2月22日 11:58 | # | 引用
wusuopubupt 说:
2014年4月17日 02:11 | # | 引用
追本溯源 说:
以直观的方式去理解是最坚实的, 如图示的方式. 这里的图示载体就是数学中的数轴. 我们求一个数的负数, 就是在前面加一个负号, 实质上是在数轴上以零点为中心做一个翻转. 在计算机中, 表示一个数都有一定范围, 如字节, 字或双字等. 以字节为例, 表示正负数时, 正数范围是0-127, 负数范围是用128-255表示-128至-1. 这实质上是将数学中的负半轴做一个平移, 而取反加一做的正是这种平衡. 平衡后加减法就统一成加法了, 如-1是255, 再加1是256, 对于字节来说就溢出了, 归零了. 所以, 以数轴的平移这种图示来理解是最直观的, 也不易忘记.
2014年6月27日 14:00 | # | 引用
LJC 说:
真麻烦 还不如直接用平衡三进制进行计算,可以直接表示负数
2014年7月10日 23:41 | # | 引用
Eric 说:
谢谢您分析地这么清楚,已拜读
2014年9月17日 21:36 | # | 引用
Grace 说:
解惑...惑了很多年
2014年10月20日 11:22 | # | 引用
kite 说:
谢谢分享,十分易懂,其实就是模的概念。
2014年12月13日 16:43 | # | 引用
Cal 说:
CSAPP讲得很详细
2015年1月19日 10:22 | # | 引用
BadTudou 说:
原码存在的问题是:0有2种表示,即“+0”和“-0”,存在二义性。
补码存在的原因是:可以把减法当作加法来处理。
这样理解对么?
2015年1月20日 11:48 | # | 引用
编程俗家弟子 说:
前面都理解了 最后的推导的就有点不理解了 还想问 阮哥 -128 -> 1000 0000 这个怎么理解 这个从我学编程 一直困扰我很久了
2015年7月20日 17:06 | # | 引用
GnakIewiy 说:
你是想说这个应该是-0吧?
首先8bit机,1bit符号位,最大整数是127,1000 0000肯定不是+128;
-0(1000 0000 正常想的)->取反 1111 1111 + 1 = 1 0000 0000(-0补码), 首位溢出不存,就是0000 0000;
-128: 1000 0000(128)->取反 0111 1111 + 1 = 1000 0000(-128补码)。
2015年7月24日 11:12 | # | 引用
Galleaxu 说:
作为一个大一新生,很感谢这篇优秀的论文,上课没听懂,现在懂了。拜读,
2015年9月24日 11:53 | # | 引用
jordan 说:
好像被减数比减数小的不适用?
176-253=176+(-253)
176=10110000
253=11111101
253(反)=00000010
253(补)=00000010+1=00000011
-253=253(补)=00000011
176+-(253)=10110000+00000011=10110011=
179?
而实际176-253=-77
求解释为什么会这样??
2016年3月18日 13:50 | # | 引用
leo 说:
表达的真好,但是再加上 模的感念 就更好了
2016年6月 2日 19:22 | # | 引用
hcc333 说:
说的太好了。以前大学的老师都没有讲清这个问题,一些大学的老师水平真的令人汗颜的差
2016年6月11日 15:26 | # | 引用
x6Rulin 说:
因为缺少符号位导致补码和原码混淆。具体解释如下:
1.使用补码表示符号数时必须带有符号位。在没有符号位的情况下,同一个补码对应的可能是一个负数,也可能是一个正数。
2.做加减运算时,补码只能和补码进行运算(废话:P),得到的结果当然还是补码。
OK!现在来看上面的问题,看看加上符号位后结果如何:
176-253=176+[-253]
176(补)=0 1011 0000 [-253](补)=1 0000 0011
176(补)+[-253](补)=1 1011 0011
1 1011 0011是一个负数,对应的原码正好是1 0100 1101=-77
2016年10月20日 00:07 | # | 引用
x6Rulin 说:
看了一下原问题,再补充一点东西。
原问题中的推导:253(补)=00000010+1=00000011
-253=253(补)=00000011
是错误的。正数的补码与原码相同,负数的补码是其绝对值的原码按位取反后加一(包括符号位),
eg.[-253](补)=253(反)+1=0 1111 1101(反)+0 0000 0001=1 0000 0010+0 0000 0001=1 0000 0011
ps:对补码的一种比较形象的理解方式是参照钟表。以0点为原点,顺时针为正,逆时针为负,补码就是按照顺时针读出的结果。而其在数学上的对应物正是模运算。
2016年10月20日 00:30 | # | 引用
轻如纸张 说:
一种最简单的理解方式:
0000 0000 = 0
那么在 0 的基础上 -1 就是(想象成借位减法):
1111 1111 = -1
以此类推:
1111 1110 = -2
1111 1101 = -3
...
2016年11月11日 03:25 | # | 引用
guanyilong 说:
你们的证明方法不算严谨的,譬如说普通十进制满足结合律,计算机这种最高位被舍去同样满足结合律吗,当然也要稍微说明一下的。
补码的定义可以根据 与相应正数相加为零从而得到,以四位数计算机为例。
十进制2被表示 0010,十进制数-2,对应补码数应该是 0010+x = 0000,也就是 0010+x=1 0000,解出x为1110,这就是-2的补码表示。
通过这种定义,假设十进制数为Y,对应二进制数为y,
则Y-Y=y+ (-Y的相应补码)=0。(根据定义)
因为两个正的十进制数相加,如果不溢出必然等于相对应两个二进制数相加,故
则任取一个正数Z,对应二进制位z则必然
Z+Y-Y=z+y+(-Y的相应补码),
令X=Z+Y,显然X对应二进制数位z+y (Z,Y都是正数)
即X是任意一个正数,且满足 X-Y=x+(-Y相应补码)
证毕
2017年2月 3日 17:44 | # | 引用
duyes 说:
这是我看到的最浅显易懂的教材,虽有不足,但能让人茅塞顿开。留言也很精彩,让人由浅入深,了解更多。
2017年2月23日 02:39 | # | 引用
shooke 说:
我记得正数的补码和反码都是他本身,应该不需要在做转换处理啊。不应该出现文章里面写的跟-8冲突的问题啊
2017年11月23日 11:00 | # | 引用
eva00rei00 说:
需要注意注意的是这篇文章无意的淡化了符号位的概念,其实计算时要考虑符号位,比如253转换成二进制是0 1111 1101 而不能是1111 1101
2018年1月 3日 10:59 | # | 引用
Joke_R 说:
文章和留言都很棒啊
2018年10月14日 15:21 | # | 引用
jason 说:
最近在看一本书《编码》,也是这么讲的,这是我这么多年第一次弄明白补码的原理,而且根据这个原理可以很容易的计算出其它进制的补码
2018年12月21日 00:01 | # | 引用
田 说:
不但知其然,还要知其所以然,好棒
2019年2月25日 15:46 | # | 引用
龙 说:
Y的2的补码等于(11111111-Y)+1。所以,X加上Y的2的补码,就等于:
这段改成这样
Y的2的补码等于(11111111-|Y|)+1。所以,X加上Y的2的补码,就等于:
似乎更清晰
2019年10月19日 19:35 | # | 引用
瑀 说:
其实我上网研究了蛮久,怎么样都没搞懂。。
谢谢你的解说
让我搞懂了2的补码
谢谢
2021年7月10日 22:00 | # | 引用
Hzzz 说:
谢谢你,让我搞懂了2的补码
2021年8月 4日 14:28 | # | 引用
Coelacanthus 说:
这个在数学上叫二进制补数和一进制补数
2021年12月 5日 20:49 | # | 引用
GeneralUniverse 说:
百度百科的补码词条,里面一开始关于模的解释,才是通俗易懂。这里一堆二进制数字加来加去,也说不清为什么0-8里面0能够变成100000000,就是为了借位而已?
2022年7月 5日 18:46 | # | 引用